
I9
0000 An Object-Oriented UIMS

JIICe for Rapid Prototyping

TR90-01 6

N LApril, 1990

Yen-Ping Shan

Apploved to p-2.ilic teieclseo

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

A TextLab Report
UNC is an Equal Opportunity/Affirmative Action Institution.

9o
* , Y

(I

An Object-Oriented UIMS for Rapid Prototyping

Yen-Ping Shan

Department of Computer Science, University of North Carolina
Chapel Hill, NC 27599-3175, U.S.A.

shan@cs.unc.edu
(919) 962-1874

Abstract

User interface management systems (UIMSs) that support rapid
prototyping often suffer from the limited range of interfaces that they
can produce and the lack of support for the connection between the
produced interface and its underlying application. This paper discusses
a Mode Development Environment (MoDE) that addresses these prob-
lems. /

1 Introduction J

Creating a good user interface for a system is a difficult task. User interface

software is often large, complex, and difficult to debug and modify. It often

represents a significant fraction of the code, frequently ranging from 40 to

60 percent. Good interfaces that are easy to use are also interfaces that are Li

complex and hard to create. There are few guidelines or strategies at the

design stage that will insure that the resulting user interface will be easy

to learn, easy to use, and user-friendly. Instead, user interface developers
des

,, : I or

Dist. "A" per telecon Dr. Ralph Wachter.
ONR/code 1133.

VHG 11/06/90 J

rely on testing prototypes with actual end users and iteratively modifying

the design. Many user interface management systems (UIMSs) have been

developed to facilitate rapid prototyping [NeX88, Sme87, LIBY89, Car89].

Although they have helped in many aspects of the prototyping process, most

of them suffer from lack of generality and lack of support for connecting the

interface with the application.

Many UIMSs are limited in the look and feel of the interfaces they can

generate. It is very hard to generate user interfaces not in the style provided.

The major reason is that they have a fixed library of interface components.

The possible interfaces are limited to those that can be composed from com-

ponents in the fixed library. For a production system, this might be desirable

since it maintains consistency among the interfaces. For a prototyping sys-

tem where new ideas are to be tested, lack of generality becomes a serious

deficiency.

Also, few of the UIMSs for prototyping provide adequate support for

connecting the user interface to the underlying application. In a good in-

terface, the semantics of the application often strongly affect the design of

the user interface. Consequently, the prototype must be connected to the

application or to a model of the application if it is to be tested fully. Most

UIMSs that generate a set of procedures or provide a callback mechanism

require programming by the interface developer to connect the interface to

the application. This programming task often becomes the bottleneck in the

prototyping process.

This paper presents a Mode Development Environment (MoDE) that

addresses the above problems.

2

2 MoDE
-1

MoDE is a general user interface management system that supports rapid

creation of a wide variety of user interfaces. It is implemented on top of

Smalltalk-80 4GR83 and an event-driven mechanismJ.Sha89]p Its dynami-

cally expandable interaction technique library allows the interface developer
to easily introduce new objects into the library. MoDE also supports cre-

ation and management of the connection between the user interface and the -

application through direct manipulation. , ¢, 2, , (.'2.* /

An interface developer uses MoDE's library of interaction techniques to, ((1
construct new interaction techniques. Each interaction technique built using

MoDE may be promoted to the library for reuse at any time. The MoDE li-
brary stores the interaction techniques in the form of live objects (with values

in the instance variables retained). Each library object represents a "copy,"
as opposed to the class, of an interaction technique. As a consequence, when

promoting an interaction technique, only a live copy of the technique needs

to be created and registered; there is no need to recompile the library. Fur-
thermore, once an interaction technique is promoted into the library, it can

be reused immediately by making copies of it. The above properties allow

the library to be dynamically expanded. Interactive techniques stored in the
library can also be written to files. These files can be read by other interface

developers' libraries to share the interaction techniques.

Each interface generated by MoDE is composed of a number of basic
building blocks called modes. A mode is distinguished by an area ou the

screen that interacts differently than its surrounding areas. A user interface

might be composed of a group of hierarchically structured modes. A mode

in such a structured interface could contain other modes as submodes. Any
given mode, however, would be a submode of only one mode - its "super-

3

Do you rtally want D remove this file?

Figure 1: A dialogue box can be viewed as one supermode with two sub-
modes.

mode." The set of modes in a structured interface forms a hierarchy.

To illustrate, the dialogue box shown in Figure 1 can be thought of as a

mode with two submodes: a "yes" submode and a "no" submode. The yes

and no buttons highlight themselves when the left mouse button is pressed

within them, and they dehighlight themselves when the cursor moves away

or the left mouse button is released. Their behavior is different from that of

their supermode which does not respond to a left mouse button press. Notice

that the text in the dialogue box is not a mode. It affects the appearance

of the dialogue box, but it does not form an area that provides a different

interpretation of the user's input.

Each mode has a "semantic object" that supplies its semantics. The

term "supply" is used instead of "generate" becaiise in MoDE, the actual

semantics are "generated" by the application but they are "supplied" to the

interface by a separate "semantic object" being described here. Semantic

objects can also connect to each other. They reside in a layer maintained by

MoDE. Objects in the layer have knowledge of both the user interface and

the application. They insulate both sides from the effects of changes. MoDE

supports the creation and manipulation of semantic objects through direct

manipulation. This three-level model of interface modes, semantic objects,

4

and application is illustrated in the next section.

It is the existence of the semantic objects that allows MoDE to pro-

vide a rich support for the connection between the user interface and the

application. Since all connections are made through the semantic objects,

supporting routines can be built into the abstract superclass of the semantic

objects. These routines keep track of the creation, deletion, and modifi-

cation of the connections. They provide MoDE with sufficient information

to perform searches, consistency checks, and other maintenance operations.

Semantic objects also help in presenting the connections to the interface de-

veloper. Without them, the links between interface objects would need to

be drawn directly from one to another (such as the link between the "yes"

submode and the dialogue box in Figure 1). A display incorporating many

such links would be difficult to understand.

3 MoDE in Use

Through a concrete example, this section illustrates how MoDE can be used

to create a prototype of a simple binary desk calculator with one display

window and three push buttons-"O," "1," and "C" (the clear button).

With MoDE, interfaces are created by dragging objects (modes) out of

the interactive technique library (the right-hand window in Figure 2) and

pasting them together. In Figure 2, the user has created a "Vanilla Mode"

as the background of the calculator and is editing its appearance.

Next, the user creates the three buttons and the display window for the

desk calculator and pastes them onto the background. This process is similar

to drawing a picture with a drawing tool. The result is shown in Figure 3.

Iii Text Buttoni

slowa lox"

E~t MG Atatute

Figure 3Shwntheti betyfor the disla windowos heds
calculator.sft Crk~ant

6e

aTextuttan

Figure 4: System requests permission to create new instance variable for the
connection.

The "Application Creator" shown in the lower right corner of Figure 3
is used to create the representative of the computing component of the desk

calculator. Because the computing component is not a visible user interface

object, a visual representative is necessary for it to be displayed and manip-

ulated directly. Here, the user decides to create the computing component

from scratch. A new class named "DeskCal" is defined and an instance of
the class is created. The representative of this instance (with the text "Ap-

aDeskCal") is shown. Remember, the semantic objects are the points of

connection. To establish the connection between the user interface and the

computing component, the semantic objects must be present. In Figure 3

the user is requesting the system to show the representative of the semantic

object of the display window.

Figure 4 shows the semantic objects (represented by diamond shaped

icons containing an "S") for the display window and the "1" button. The

user has created a link from the semantic object of the "1" button to the

computing component, and would like to create another link from the com-

puting component to the semantic object of the display window. His plan is

for the semantic object of the "1" button to send a message to the computing

component whenever the button is pushed. The computing component, in

response, updates its states and requests the display window to display the

7

&TextL&

Lin To-.

Edt

Figure 5: Inspect the semantic object.

IvetxtlN

-- -- -- -- Ju t PU

self

te

Figure 6: The default action message is "buttonPushed:"

digit "1" by sending a message to its semantic object. Since the DeskCal class

is a new class, it does not have an instance variable to store the connection.

The system infers that a new instance variable is needed and requests per-

mission to create one, as shown in Figure 4. Once the permission is granted,

the user will be prompted for the name of the new instance variable and the

system will automatically change the class definition of the DeskCal to insert
this new instance variable and update all the existing instances of the class.

Next, the user selects the "Inspect" option in the menu associated with

the semantic object to inspect the "1" button (Figure 5). The inspector,

8

&T*tL~tbei

Txt

Figure 7: The system shows a list of the messages understood by the semantic

object of the display window.

shown in Figure 6, indicates that the default action message for the button
is "buttonPushed:" The colon at the end indicates that there is one argument

for this message. By default it is the text string of the button.

Since the computing component is created from scratch and does not un-

derstand the "buttonPushed:" message, the user selects the "Add Message"

option in the menu associated with the link. The system will open a code

editor for the user to define the "buttonPushed:" method in the DeskCal

class.

In the process of defining the method, the user needs to know what mes-

sage can be sent to the display window to display the result of a computation.

The system can help by displaying the messages understood by the display

window. In Figure 7, the list of understood messages is shown and the user

finds that the "displayText:" method is what he needs.

The other two buttons can be connected in the same manner. Figure 8

shows the fully connected desk calculator. Since all interfaces created with
MoDE are immediately testable, there is no need to switch to a test state.

Further, the user can test the partially implemented prototype at any point

in its development. In Figure 8, for example, the button "1" was pushed and

9

Texttt

Figure 8: The interface and the application are fully connected.

the display window of the calculator shows the correct result.

There are two approachs to handling the clear button. The first one

is to use the default message ("buttonPushed:") and have the computing

component interpret the argument "C" as a special command. An alternative

is to use a different message selector (for example "clear") and define the

corresponding method in the DeskCal class. Both approachs are valid. MoDE

allows the user to choose whichever he prefers.

After the user finishes the prototyping, he hides all the connections and

promotes the calculator into the interaction technique library by dragging

the desk calculator into the library. The library automatically prepares an

icon for the calculator, as shown in Figure 9.

4 Experience with MoDE

Sample Interfaces

MoDE has been used to create many direct-manipulation user interfaces. Fig-

ure 10 shows a few sample interfaces created with it. The scroll bar in the top

10

I T Lbrary

I a 0e1 1 fz-sTest Button

Piano Wineow Iconic Mode

rt-i

Figure 9: The binary desk calculator is promoted into the interaction tech-
nique library.

left window (Roam demo) scrolls the picture continuously. The top right win-

dow (Menu demo) has three types of menus: title-bar menu, tear-off menu,

and pop-up menu (not displayed). Menu items can be text, foreign char-

acters, bitmaps, and animated pictures. The lower left window (titled "For

Barry") demonstrates the system's capability to incorporate scanned images

and text editors. The largest window (titled "OddShape Window") contains

two subwindows; both allow the user to create networks of hypertext nodes.

The oddly shaped subwindow has three nodes in it. The user is dragging one

of the nodes over the trash icon in another window (titled "Level of DM").

The trash icon opens to provide semantic feedback. Rubber-band lines are

drawn from "Oddl" node and "Odd3" node to the node being dragged to

show the connection. Notice that the oddly shaped subwindow has a hole

in it through which the user can work with objects (for example, the "Be-

lowl" node) underneath the window. MoDE also supports semi-transparent

windows as shown in the right half of the oddly shaped subwindow.

Self-Creation

11

oa vl fOM FMi Hearthy Languages Trash

I rchyIlID IIs

Figue 10 Samle ser nteracescreted ith aDE

Odd$Me 7 7 /Ti me~12

II T Ubr

Figure 11: The MoDE is used to edit itself.

To demonstrate the generality of MODE, the user interface of MoDE was

created using itself. Consequently, MoDE can be used to edit itself. For

example, in Figure 11, the user is using MoDE to examine the connection

between the "ShrinkBox" and the "Window" of the interaction technique

library. The user has also made some changes to MoDE. The two scroll bars

of the interaction technique library were removed, and a "Roam Box" (a
two-dimensional scrolling device) has been attached.

Since it is easy for users to customize the user interface of MODE, the

interface images shown in this document represent only a small sample of

those developed by the author.

Rapid Prototyping

In an informal experiment to study the effectiveness of MODE, two groups

of subjects were asked to create the same interface. One group used MoDE

exclusively; the other group used whatever tools they liked except MODE.

The group using MoDE were able to finish the assignment both faster and
with fewer unimplemented features than the other group. Time data collected

from this informal experiment suggest that MoDE reduces the time required

13

to develop a prototype interface by nearly an order of magnitude.

5 Conclusion

MoDE provides an effective environment for prototyping user interfaces. The

capability to easily incorporate new objects into the library results in a gen-

eral system with which a wide variety of interfaces can be created. Experience

with MoDE shows that its support for connection between the user interface

and the application substantially facilitates the prototyping process.

To support studies of user behaviors, i experimental tracking system

has been incorporated into MoDE to collect transcripts of users' interaction

with prototype interfaces. The transcripts can be used to recreate the users'

sessions and to support computerized analysis. MoDE is also being used to

prototype interfaces for a hypertext software engineering system.

6 Acknowledgement

A number of organizations and people have contributed to the work reported

here. The author is grateful to the National Science Foundation (Grant #

IRI-85-19517) and the Army Research Institute (Contract #MDA903-86-C-

0345) for their support of this research. This work has been done as part of

the author's dissertation project under the supervision of Professor John B.

Smith. Barry Elledge provided valuable comments and suggestions for this

paper. The Textiab Research Group within the Department of Computer

Science at the University of North Carolina at Chapel Hill has provided a

provocative and supportive intellectual environment for this work.

14

References

[Car89] L. Cardelli. Building user interface with direct manipulation.

SIGCHI'89: Human Factors in Computing Systems, pages 152-

166, May 1989.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and Its

Implementation. Addison-Wesley, 1983.

[LIBY89 T. G. Lewis, Fred Handloser III, Sharada Bose, and Sherry

Yang. Prototypes from standard user inferface management sys-

tem. Communications of the Assoication of Computing Machinery,

22(5):51-60, may 1989.

[NeX88] NeXT, Inc., Palo Alto, Calif. NeXT System Reference Manual,

1988.

[Sha89] Yen-Ping Shan. An event-driven model-view-controller framework

for smalltalk. In OOPSLA '89: Object Oriented Programming, Sys-

tems and Applications, pages 347-352, October 1989.

[Sme871 SmethersBarnes, P.O. Box 639, Portland, Ore. 97207. Smethers-

Barnes Prototyper User's Manual, 1987.

15

